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Abstract9

10

Through reward-based learning, people learn which actions generate which outcomes in11

which situations. What happens to human reward-based learning when outcomes are shared?12

Here we show that learning is impacted by inequity in the distribution of rewards (self-other)13

and others’ identity. In three experiments, participants could learn how different actions, in14

response to different stimuli, generated different monetary rewards, each split between the par-15

ticipant and a member of a particular social group. Overall, participants learned more slowly16

and less successfully when they received a smaller (vs larger) share of the total reward. Stereo-17

types about the partner’s social group additionally modulated learning rates when cognitive18

load was reduced, with lower perceived warmth or competence hampering learning from the19

partner’s share. Computational modeling showed participants’ learning was best explained by20

adapting the standard reinforcement learning model to account for stereotypes and inequity21

information, demonstrating that social context modulates non-social learning processes.22
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1 Introduction23

Through experience, people learn links between their behaviors and the outcomes they produce,24

including which actions lead to which kinds of costs or benefits in which situations, on average.25

For example, across repeated experiences, someone might learn how much seasoning they like on26

their pasta, which floors of a parking garage will have available spaces on the weekend, or what27

type of social media post gets the most engagement. This sort of learning can be modeled using28

a reinforcement learning framework (Sutton & Barto, 1998), which formalizes the relationship29

between the expected and actual rewards of an action in terms of a reward prediction error (RPE).30

In humans and other species, these learning signals are reflected in the activity of subcortical31

structures in the brain (Frank, Seeberger, & O’reilly, 2004; Langdon, Sharpe, Schoenbaum, &32

Niv, 2018; Schultz, Dayan, & Montague, 1997) and known to guide behavior. More positive33

prediction error increases the likelihood of repeating the action, whereas more negative prediction34

error reduces the likelihood of repeating the action. Interestingly, people often perform actions35

whose rewards are not theirs alone but are instead distributed across themselves and others, whether36

choosing what kind of cake to order for a birthday party or choosing a driving route for a group road37

trip. How does the social distribution of rewards affect learning? Despite progress in characterizing38

the reinforcement learning processes, on the one hand, and people’s preferences for the social39

distribution of resources, on the other, whether and how the social distribution of rewards impacts40

reinforcement learning is not well understood.41

Although research on reinforcement learning has predominantly treated rewards as fixed (i.e.,42

rewarding versus not rewarding; punishing versus not punishing), there is growing interest in char-43

acterizing contextual influences on valuation during reinforcement learning in a more flexible and44

continuous manner (Bavard, Lebreton, Khamassi, Coricelli, & Palminteri, 2018; Palminteri & Le-45

breton, 2021; Spektor, Gluth, Fontanesi, & Rieskamp, 2019; Suzuki & O’Doherty, 2020). In46

particular, a number of studies have documented effects of aspects of social context on learning.47

For example, social contexts can serve as information sources for learning, including through ob-48

servational learning or advice-taking (Charpentier & O’Doherty, 2018; Hertz, Bell, & Raihani,49
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2021; Vélez & Gweon, 2019; Witt, Toyokawa, Lala, Gaissmaier, & Wu, 2024). There is also50

evidence that social context can serve as reward or punishment itself (e.g. smiling or positive feed-51

back; Bhanji & Delgado, 2014; Heerey, 2014; Jones et al., 2011; Lindström, Selbing, Molapour,52

& Olsson, 2014), modulate the value one places on rewards received by others (Hackel, Zaki, &53

Van Bavel, 2017; Nafcha & Hertz, 2024), and shape the degree to which people learn vicariously54

from others’ reward or punishment (Christopoulos & King-Casas, 2015; Lockwood, Apps, Valton,55

Viding, & Roiser, 2016; Sul et al., 2015). Still, little is known about (whether and) how social56

context influences basic non-social reinforcement learning process when rewards are shared.57

In parallel, research on social decision-making has characterized people’s preferences for58

how resources should be divided across themselves and others. Overall, people display social59

preferences for equity and fairness by making decisions that promote equal and fair distributions60

of resources, respectively (Fehr & Camerer, 2007), suggesting that people generally derive greater61

value from equal (or fair) distributions of resources than unequal ones, but if resources are divided62

unequally, people generally prefer to receive the larger share. Yet this preference can be moderated63

by factors, such as social distance (Strombach et al., 2015) and social group membership (Hackel,64

Mende-Siedlecki, Loken, & Amodio, 2022; Jenkins, Karashchuk, Zhu, & Hsu, 2018). In particular,65

recent evidence suggests that perceptions of others’ traits, such as their warmth and competence,66

changes the value people place on particular divisions of resources across themselves and other67

people: the more warm the recipient, the less value people derive from advantageous inequity, i.e.,68

receiving more than the other person, whereas the more competent the recipient, the less value69

people derive from disadvantageous inequity, i.e., receiving less than the other person (Jenkins et70

al., 2018; Kobayashi, Kable, Hsu, & Jenkins, 2022).71

To what extent do patterns of social valuation, observed during decision-making, extend to72

impact reward signals during learning? Outside the social domain, differences between subjective73

value measured during reward-based learning versus decision-making suggest the non-triviality74

of this question. For example, during learning, individuals show range adaptation: that is, they75

demonstrate no meaningful advantage to learning when the rewards at play are in the range of76
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$100 in magnitude than when rewards (differ by the same proportions but) are in the range of $1077

in magnitude (Bavard, Rustichini, & Palminteri, 2021; Rustichini, Conen, Cai, & Padoa-Schioppa,78

2017; Webb, Glimcher, & Louie, 2021). Yet during decision-making, people demonstrably value79

actions that generate $100 over those that generate $10. Likewise, although individuals generally80

value advantageous over disadvantageous inequity during decision-making, it could be the case81

that subjective value shows adaptation to the inequity context. If so, individuals exposed only to82

(various levels of) advantageous inequity and individuals exposed only to (various levels of) dis-83

advantageous inequity would learn equally well from the best split percentage to which they are84

exposed, even though individuals in the advantageous context are exposed to better split percent-85

ages overall.86

In the current studies, we addressed these questions by adapting a computerized, non-social87

reinforcement learning task from Collins and Frank (2012) to accommodate manipulations of the88

inequity of the reward (reward distributions across the learner and a partner, by percentage) and89

the social identity of the partner (Figure 1). We chose this task paradigm because it can isolate90

contributions of lower-level reinforcement learning processes (versus executive processes) to per-91

formance while accommodating parametric modulations of inequity along with manipulations of92

partner identity. In 3 studies, participants had opportunities to learn the reward of stimulus-action93

pairs (images and button presses) under conditions of (in)equity in the social distribution of the94

rewards. One button press generated the largest reward, another generated the smallest reward,95

and a third generated an intermediate reward. Participants played 8 independent blocks of the task.96

In each block, they were first shown the set of images they would encounter in that block (5 images97

per block in Studies 1 and 2; 2 images per block in Study 3), followed by a piece of information98

about the partner with whom the rewards would be split during that block (e.g., “a nurse”). Then,99

on each trial, the participant saw an image on the screen and chose which of 3 eligible buttons on100

the keyboard to press (j, k, or l), within 1.5 seconds. Following the button press, a feedback screen101

displayed how much money they and the other person gained (e.g., You: $.30; Nurse: $.70). In102

each block, 12 trials per image were intermixed in a random order, for (5 images x 12 trials = )103
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60 trials per block in Studies 1 and 2 and (2 images x 12 trials = ) 24 trials per block in Study 3.104

The total reward to be split across the participant and the partner depended on the button press: for105

each image, one button deterministically generated the highest reward (e.g., $2), another determin-106

istically generated the intermediate reward (e.g., $1), and a third deterministically generated the107

lowest reward (e.g., $0). Inequity type was manipulated between subjects, such that each partici-108

pant was either assigned to the advantageous condition (they always gained more than 50%) or the109

disadvantageous condition (they always gained less than 50%). Within each inequity type, specific110

split percentage were manipulated within subjects. To implement this, each image corresponded to111

a specific reward split between the participant and the partner (unbeknownst to participants). For112

example, for one participant in one block, the car image was always associated with the participant113

receiving 30% of the money and the other person receiving 70%.114

In Study 1, the total amount of reward (summing the participant and the partner’s reward) was115

held constant across inequity conditions, varying the amount the participant personally received.116

In Study 2, the amount that a participant received themselves was held constant across inequity117

conditions, varying the total amount of reward summing across the participant and the partner. In118

Study 3, in light of prior research suggesting that cognitive load may dampen social information119

processing (Jenkins, 2019; Sullivan-Toole, Dobryakova, DePasque, & Tricomi, 2019), we reduced120

the total number of stimulus-action pairs in order to reduce cognitive load during learning, allowing121

for the possibility that effects of social information may be elevated in such cases. In all studies,122

we varied the identity of the partner by informing the participant of their occupation (e.g., Nurse),123

following past studies (Goncharova & Jenkins, submitted; Jenkins et al., 2018; Kobayashi et al.,124

2022) and collected participants’ ratings of the perceived warmth and competence of people with125

these occupations, both following the learning task and in an independent set of participants (Fiske,126

Cuddy, & Glick, 2007). The occupation information remained the same within each learning block.127

We raise 3 possible, not mutually exclusive hypotheses about the ways in which social con-128

textual information might shape reinforcement learning. First, reinforcement learning may operate129

on objective rewards during learning (such as the total reward generated by different stimulus-130
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action pairings). Second, reinforcement learning may be shaped by the degree of social inequity131

of the reward (i.e., how much more or less of the reward the participant receives than the partner).132

Third, reinforcement learning may be shaped by the perceived traits of the partners with whom133

rewards are shared. We formalized these hypotheses into 4 computational models and tested their134

fit to participants’ data. Two models formalize the first hypothesis, assuming only effects of ob-135

jective reward, with no effect of social inequity or identity on reinforcement learning (baseline136

RL models). The baseline model in Study 1 and 3 only learned from the total reward because137

by experimental design, the total reward did not depend on the inequity manipulation. In Study138

2, the baseline model only learned from the amount of reward given to the participant because139

Study 2 was designed such that the total reward amount depended on the inequity manipulation140

while the reward given to the participant did not depend on the inequity manipulation. To for-141

malize the second hypothesis, we constructed an inequity-weighted reinforcement learning model142

(IRL), which assumes that the rewards of both the learner and the target, along with the (signed)143

difference between them, affect learning. To formalize the third hypothesis, we created a so-144

cial perception-weighted reinforcement learning model (SPRL), which assumes that the perceived145

traits (warmth and competence) of the social target combine with inequity to impact learning. This146

model builds upon our findings in social decision-making that perceptions of others’ traits mod-147

ulate people’s preferences for (or against) inequity (Jenkins et al., 2018; Kobayashi et al., 2022).148

Here, we applied the utility function from our previously-developed social perception weighted149

model of social valuation to calculate the reward signal (Q value) for reinforcement learning (see150

Method). By comparing the fits of each of these models to participants’ learning behavior, we151

can distinguish among the different hypotheses about whether and how social contextual informa-152

tion impacts reinforcement learning. All procedures were conducted in a manner approved by the153

Institutional Review Board at the University of Pennsylvania (protocol #831852).154
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Figure 1: Example task. A, B) The task was grouped into 8 independent blocks. Before each block,
participants saw all stimuli they may encounter, and the occupation of the social target that would
receive a share of the reward. Figure A) shows the block structure of Study 1 & 2, where people
had to learn about 5 stimuli per block. Figure B) shows Study 3, where the cognitive load was
reduced by only learning about 2 stimuli per block. C, D) Trial structures: Each image stimulus
would appear for 12 trials in total and corresponded to one percentage of split. The trials for all
5 stimuli were randomly shuffled. Figure C) shows the trial structure of Study 1 & 3 where each
action generated a fixed total reward ($0, $1, or $2) which was then split between the participant
and the social target. Figure D) shows the structure of Study 2, where each action generated a fixed
reward to the participant ($0, $1, or $2). The reward went to the social target, and hence the total
reward, depended on the specific percentage of split. In all studies, both the participant and the
social target would gain more (hypothetical) money if the participant learned quickly to press the
button that generates the highest reward.

2 Methods155

2.1 Study 1156

2.1.1 Participants157

Participants (N = 99) were recruited through the University of Pennsylvania’s SONA platform and158

earned undergraduate psychology class credit for their online participation. 5 participants were159
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excluded for a response rate below 80%, leaving us with 94 participants for analysis and modeling.160

41 participants were randomly assigned to the advantageous condition (Mage = 19.63, 32 women, 8161

men) and 53 participants were randomly assigned to the disadvantageous condition (Mage = 19.79,162

35 women, 16 men, 2 self-described). Demographic information was collected in a self-report163

survey after the experiment. All procedures were conducted in a manner approved by the Institu-164

tional Review Board at the University of Pennsylvania (protocol #831852). Informed consent was165

obtained from all participants before their participation. The study was not preregistered.166

2.1.2 Experimental Procedure167

After choosing to participate on the SONA system, participants proceeded to a new browser win-168

dow to start the experiment which was coded in PsychoPy (Peirce et al., 2019), converted to Psy-169

choJS, and hosted on Pavlovia (pavlovia.org). On each trial of the experiment, the participant170

viewed a stimulus image on the screen and chose which of three possible keys to press in response;171

this action would generate some amount of monetary reward. Crucially, the monetary rewards172

obtained would ostensibly be split between themselves and another person, making it possible to173

manipulate inequity. We used images from (Collins, Ciullo, Frank, & Badre, 2017) as stimuli in174

our task.175

The task consisted of 8 blocks of trials. A trial was the smallest unit of the task where partici-176

pants saw a stimulus (in this case, an image) presented on the screen and pressed a key in response.177

A block was a collection of trials run one after another. Our experiment had one between-subject178

manipulation, one between-block manipulation, and one within-block manipulation. Between sub-179

jects, we manipulated inequity type. We assigned each participant randomly into either an advanta-180

geous condition, where the participant received more than half of the reward, or a disadvantageous181

condition, where the participant received less than half of the reward. We chose to manipulate182

inequity type between-subjects for two main reasons, First, this allowed for a stronger test for the183

absolute effect of inequity type on learning. If each participant had experience with both advan-184

tageous and disadvantageous splits, any difference between the two conditions could have arisen185

due to anchoring effects. Second, the between-subject design kept the duration of the experiment186
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within a range that minimized concerns about data quality. Similarly, given that learning on a187

non-social version of this task is already documented (Collins et al., 2017; Collins & Frank, 2012),188

we chose not to include a non-social learning condition in the current study. Between blocks,189

we manipulated the social group membership of the partner (social target). Before each block,190

participants were told the occupation of the social target (Taxi Driver, Nurse, Judge, Computer191

programmer, Dancer, Plumber, Politician, or Secretary). These 8 occupations were selected to192

cover as widely as possible the range of warmth and competence ratings according to Jenkins et al.193

(2018). Each occupation was randomly assigned to one of the 8 inequity blocks. Within a block,194

each stimulus image corresponded to a different percentage of split. For example, if the stimulus195

on the screen was an image of a lotus, 30% of the reward generated by the keypress would go to196

the participant, whereas if it was an image of a tree, the participant would get 0% of the reward.197

There were 5 unique stimuli in each block, corresponding to 100%, 90%, 80%, 70%, and 60% of198

the reward in the advantageous condition, and 0%, 10%, 20%, 30%, or 40% in the disadvantageous199

condition.200

Each block was a learning problem independent of the others, using distinct sets of images. At201

the beginning of each block, the screen presented all 5 images that the participants would encounter202

in that block. 12 iterations of each stimulus were interleaved throughout each block.203

Within each block, the trial structure was as follows: The trial began with an inter-trial interval204

of 1.5 seconds during which only a white cross was displayed at the center of the screen. Next,205

participants viewed one of the learning stimuli on the screen which was continually displayed206

either until the participant responded with one of the three possible actions (“j”, “k”, or “l”), or if207

1.5 seconds had elapsed. Each possible action generated either $0, $1, or $2 as monetary reward.208

For each particular stimulus, two different keys could not generate the same reward amount. For209

any two stimuli in the same block, there was at least one key that generated different rewards for210

either stimulus. Upon pressing the key at each trial, participants would see on the screen how much211

reward they had received and how much reward the other person had received. The respective212

reward amount was determined by multiplying the generated reward with the split percentage213
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corresponding to the stimulus. However, if the reaction time exceeded 1.5 seconds, the screen214

instead displayed the message “please respond faster”, and if the response was faster than 0.15, the215

response would not register and the participant must press the key again. The feedback stayed for216

2 seconds before transitioning to the next trial.217

To become familiarized with the tasks, participants first read through the instructions, which218

informed participants that each key generated either $0, $1, or $2 as total reward but part of it219

would be split to another person. The instructions also emphasized that participants should imag-220

ine the rewards were actual money. We did not explicitly state that the goal of the task was to get as221

much reward as possible, in which case participants may deliberately ignore social information and222

solely focus on the total reward. In order to elicit how participants would naturally incorporate so-223

cial information with rewards, we stated merely that paying more attention could help you get more224

rewards. Participants then performed one practice block which had the same structure as a regular225

block in the task but used a different set of images, and participants were told to receive 50% of the226

generated rewards while the remainder went to a singer (which was an occupation not used in the227

main task). After the entire experiment, participants were redirected to Qualtrics (qualtrics.com) to228

complete a short demographic survey where we also listed the 8 occupations that they had encoun-229

tered during the task and asked them to rate from 0 to 100 how warm and how competent they per-230

ceived each of the occupations (see Figure S3). The order of these questions in which we presented231

to participants on Qualtircs was randomized. Because the social perception rating was always col-232

lected after the learning task, we confirmed that there was no evidence the between-subject manip-233

ulation systematically biased participants’ ratings of warmth or competence in any of the 3 studies234

through t test (Study 1: tcompetence(679) = −0.81,p = .421,d = −0.06,95%CI = [−0.20,0.08];235

twarmth(705) = −1.76, p = .079,d = −0.13,95%CI = [−0.27,0.01]; Study 2: tcompetence(595) =236

0.42, p= .671,d = 0.03,95%CI = [−0.12,0.18]; twarmth(625)= 0.83, p= .407,d = 0.06,95%CI =237

[−0.09,0.21]; Study 3: tcompetence(744) = −1.05, p = .296,d = −0.08,95%CI = [−0.22,0.07];238

twarmth(753) =−0.88, p = .382,d =−0.06,95%CI = [−0.21,0.08])239
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2.2 Study 2240

2.2.1 Participants241

Participants (N = 100) were recruited through the University of Pennsylvania’s SONA platform and242

earned undergraduate psychology class credit for their online participation. 9 participants were ex-243

cluded for a response rate below 80%, leaving us with 91 participants for analysis and modeling.244

55 participants were assigned to the advantageous condition (Mage = 19.87, 37 women, 16 men)245

and 36 participants were assigned to the disadvantageous condition (Mage = 20.03, 28 women, 8246

men). Demographic information was collected in a self-report survey after the experiment. All247

procedures were conducted in a manner approved by the Institutional Review Board at the Uni-248

versity of Pennsylvania (protocol #831852). Informed consent was obtained from all participants249

before their participation. The study was not preregistered.250

2.2.2 Experimental Procedure251

After choosing to participate on the SONA system, participants proceeded to a new browser win-252

dow to start the experiment which was coded in PsychoPy (Peirce et al., 2019), converted to Psy-253

choJS, and hosted on Pavlovia (pavlovia.org). The experimental design was identical to that of254

Study 1, with an important exception: in Study 2, the amount of reward given to the participant255

was held constant across split conditions. Consequently, the total amount of rewards generated256

may vary. Therefore we accordingly modified the instruction. We did not inform the participants257

that each key generates either $0, $1, or $2, we just told them that each key may generate a differ-258

ent amount of total reward. In actuality, each key generated the amount of total reward such that259

the amount given to the participant was either $0, $1, or $2. The total reward was thus either $0, $1260

divided by the percentage of split to the participant, or $2 divided by the percentage of split to the261

participant. Because the 0% was not mathematically possible under this new design, we replaced262

it with 50%.263
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2.3 Study 3264

2.3.1 Participants265

Participants (N = 100) were recruited through the University of Pennsylvania’s SONA platform266

and earned undergraduate psychology class credit for their online participation. 5 participants were267

excluded for a response rate below 80%, leaving us with 95 participants for analysis and modeling.268

47 participants were assigned to the advantageous condition (Mage = 19.76, 29 women, 17 men)269

and 48 participants were assigned to the disadvantageous condition (Mage = 19.92, 23 women,270

23 men, 1 self-described). Demographic information was collected in a self-report survey after271

the experiment. All procedures were conducted in a manner approved by the Institutional Review272

Board at the University of Pennsylvania (protocol #831852). Informed consent was obtained from273

all participants before their participation. The study was not preregistered.274

2.3.2 Experimental Procedure275

After choosing to participate on the SONA system, participants proceeded to a new browser win-276

dow to start the experiment which was coded in PsychoPy (Peirce et al., 2019), converted to Psy-277

choJS, and hosted on Pavlovia (pavlovia.org). The experimental design was identical to that of278

Study 1, with one important exception: to reduce cognitive load, we reduced the total number of279

stimuli to 2 unique stimuli per block (rather than 5), where each stimulus corresponded to 90% or280

70% in the advantageous condition, and 10% or 30% in the disadvantageous condition.281

2.4 Regression analyses282

2.4.1 Full regression predicting rewardingness of action by trial283

We ran the following mixed-effect linear regression for each of the 3 studies:

rewardingness ∼ iteration∗ split∗ inequity∗warmth∗ competence+(1|subject) (1)

where rewardingness denotes the reward amount independent of the manipulation of social284

distribution ($0, $1, or $2). iteration denotes how many iterations has the stimulus appeared in285
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a particular learning block (1, 2, ..., 12). split denotes the percentage of the reward given to par-286

ticipant themselves (0, 0.1, 0.2, ..., 1). inequity is a categorical variable denoting whether the287

participant is in the advantageous inequity condition or the disadvantageous inequity condition.288

warmth denotes participant’s rating on the perceived warmth of the social target (1 - 100). compe-289

tence denotes participant’s rating on the perceived competence of the social target (1 - 100). subject290

denotes the participant ID that we use as a random intercept. Before passing into the regression291

model, we standardized rewardingness, iteration, warmth, and competence across the entire data292

set and we also standardized split within the advantageous or disadvantageous conditions so that it293

is not confounded with inequity.294

2.4.2 Regression by separate inequity type295

We ran the following mixed-effect linear regression for both the advantageous condition and the

disadvantageous condition in each of the 3 studies:

rewardingness ∼ iteration∗ split∗warmth∗ competence+(1|subject) (2)

All variables were standardized and we removed the split condition where the participant296

received 0% in Study 1 and the split condition where the participant received 50% in Study 2 as297

they might serve as edge cases that drove the results in the full regression model.298

2.4.3 Regression predicting reaction time of action by trial299

We ran the following mixed-effect linear regression for each of the 3 studies and the results were

referenced in the supplemental (Figure S1):

rt ∼ iteration∗ split+(split|subject)+(split|inequity) (3)

rt denotes the reaction time at each trial. Both participant ID and inequity type were included300

as random intercept and split as randomly slope, allowing the effect of split to potentially differ301

across participants. Before passing into the regression model, we standardized rt and iteration302
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across the entire data set and we also standardized split within the advantageous or disadvantageous303

conditions so that it is not confounded with inequity.304

2.4.4 Regression predicting trial-by-trial model comparison305

We ran the following mixed-effect linear regression for each of the 3 studies:

∆WAIC ∼ iteration∗ inequity+(1|subject) (4)

where iteration was centered by subtracting 5 from it. ∆WAIC denotes the trial-by-trial differ-306

ence in WAIC between the inequity-weighted model and the baseline model, showing how much307

did the former outperform the latter in fitting the participant data.308

2.4.5 Procedures309

For the regression analyses, we tested the impact of different task variables by performing mixed-310

effect linear regression analysis using R function mixed in package afex (Brown, 2021). All nu-311

meric variables were scaled before being passed into the regression model and all interaction terms312

were included. The package afex conducts significance testing on regression coefficients by com-313

paring the fit of the full model with the truncated model without that regressor through χ2 test.314

To conduct Wilcoxon test, we used the wilcox_test function from the package rstatix. To conduct315

two-sample t test, we used the t_test function from the package rstatix. For both tests we averaged316

within participants first so the sample sizes are the number of participants in each condition and317

both are two-sided tests.318

2.5 Computational Models319

All of our candidate models were adaptations of a typical reinforcement learning model (Sutton &320

Barto, 1998). The model relies on two main variables representing the task environment. The first321

one is the state s ∈ S, where S represents the full stimulus/state space within a block (i.e., all the322

possible images that could appear). In our experiment, |S| = 5 except in Study 3 where |S| = 2.323

The second variable is the action a ∈ A, where A is the full action space. In our experiment, |A|= 3324
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because there were three possible buttons to press as a response to the instrumental learning task.325

The algorithm proceeds in two stages, as introduced in the introduction: the value updating stage326

and the policy formation stage. In the value updating stage, for stimulus s and action a on trial t,327

the model estimates an expected value (i.e., the Q value) QQQ(st ,at) by performing an update using328

the delta rule (Equation 6; Rescorla, 1972):329

QQQt+1(st ,at) = QQQt(st ,at)+αδt (5)

δt = rt −QQQt(st ,at) (6)

where α represents the learning rate and QQQt represents a |S| × |A| matrix encoding all Q330

values given a trial t. QQQ0 is initialized as a uniform matrix of the expected values of random331

guessing. δ ∈ R is the reward prediction error, and rt ∈ {0,1,2} is the reward received at trial t.332

In the policy formation stage, Q values are transformed by the Softmax function into a policy,

i.e., a vector of probabilities of taking each action (represented by π⃗t).

π⃗t = p(A⃗|st) = So f tmax(QQQt(st),β ) =
eβQQQt(st)

∑a∈A eβQQQt(st ,a)
(7)

where β ∈ [0,∞) represents the inverse softmax temperature. Finally, we allow all Q values333

to decay back to the initial Q values with a decay rate (φ ∈ [0,1]) to capture subjects’ forgetting334

process.335

QQQt+1(st ,at) = QQQt(st ,at)+φ(QQQ0(st ,at)−QQQt(st ,at)) (8)

2.5.1 Naive336

The naive model is just the same reinforcement learning model as described above, where the337

inequity and social target information are entirely discarded. This model instantiates the hypothesis338

that participants only learn by the total amount of reward generated and ignore how the reward is339

split afterward. In Study 2, just like in Study 1, the naive model is the model that only learns340
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based on the total reward, but the total reward is dependent on the split by experimental design:341

rt ∈ {0, 1
pself

t
, 2

pself
t
} and ∀a ∈ A, QQQ0(st ,a) = 1

pself
t

. This model still instantiates the hypothesis that342

participants only learn by the total amount of reward generated and ignore how the reward is split343

afterward. The baseline model reported in the main task for Study 1 and 3 was the naive model344

since the total reward was independent of the split condition.345

2.5.2 Selfish346

The selfish model instantiates the hypothesis that participants only learn by the amount of reward

given to themselves. It is the same as the naive model except it only uses the amount of reward

given to self:

δt = rt ∗ pself
t −QQQt(st ,at) (9)

where pt denotes the percentage of the reward given to the participant at that trial, and QQQ0 is

initialized to be the percentage of split corresponding to the trial where a new stimulus first appears:

if ∀t ′ < t,st ′ ̸= st , we have ∀a ∈ A,

QQQ0(st ,a) = pself
t (10)

In Study 2, the concept of the selfish model is the same. Because in Study 2 we ensure the reward347

given to self does not depend on pself
t , rt ∗ pself

t ∈ {0,1,2} and QQQ0(st ,a) = 1. The baseline model348

reported in the main text for Study 2 was the selfish model.349

2.5.3 IRL350

The inequity-weighted model (IRL) instantiates the hypothesis that the degree of inequity of how

the reward is split between the participant and the social target shapes how the reward is represented

(Barnby, Raihani, & Dayan, 2022). We formalize the effect of inequity using the Fehr-Schmitt

utility function (Rohde, 2010):

ut = rt ∗ (pself
t + γ ∗ (ptarget

t − pself
t )) (11)
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where in our task, ptarget
t = 1− pself

t is simply the percentage of reward given to the recipient, and

the inequity weight γ ∈ R controls the influence of the inequity. In the disadvantageous inequity

condition, positive γ means that the participant finds it more rewarding if the other person obtained

more reward than themselves. Negative γ means that the participant finds it less rewarding if

the other person obtained more reward than themselves. In the advantageous inequity condition,

positive γ means that the participant finds it less rewarding if the other person obtained less reward

than themselves. Negative γ means that the participant finds it more rewarding when the other

person obtained less reward than themselves. If γ = 0, it means the participant only cares about

the reward given to themselves and is indifferent to the inequity. In general, γ captures in what

direction and to what extent a participant deviates from a purely selfish agent and cares about

inequity in the reward distribution. The delta rule thus becomes

δt = ut −QQQt(st ,at) (12)

QQQ0 is initialized to be the expected utility corresponding to the trial where a new stimulus first

appears: if ∀t ′ < t,st ′ ̸= st , we have ∀a ∈ A,

QQQ0(st ,a) = pself
t + γ ∗ (ptarget

t − pself
t ) (13)

We initialized Q0 differently for different split conditions because initializing Q0 with a flat value351

significantly undermines the ability for the model to capture the key effects of learning. We con-352

firmed this by simulating the winning model with a flat initialization of Q0 on the Study 3 data353

and showed that it failed to produce the split effect that was produced by human participants in the354

disadvantageous condition (Figure S9).355

2.5.4 SPRL356

The social perception-weighted model (SPRL) instantiates the hypothesis that not only does the

degree of inequity shape how the reward is represented, but the sensitivity to the inequity fur-
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ther depends on the social perception of the recipient’s identity. We adopt the social preference

model from (Jenkins et al., 2018) to capture the effect of warmth and competence on the inequity

weighting parameter:

γ = γ0 + γw ∗w+ γc ∗ c (14)

where w is the warmth rating and c is the competence rating that we collected in the post-task357

survey. The rating scale we used for the survey was from 0 to 100. For the stability of modeling358

fitting, we rescaled the social perception ratings into [−0.5,0.5]. γ0,γw,γc ∈ R are respectively the359

base weight, warmth weight, and competence weight.360

2.6 Modeling Procedure361

We fitted all model parameters using hierarchical Bayesian methods. Compared to the traditional

maximum likelihood estimation, not only does the Bayesian fitting method give us a full posterior

distribution over the fitted parameters (instead of simply one point estimate), but it also yields

a superior parameter and model recovery (Baribault & Collins, 2025; Eckstein, Master, Dahl,

Wilbrecht, & Collins, 2022). The population-level priors for all model parameters were carefully

tuned to be as uninformative as possible while avoiding divergence during fitting:

ααα ∼ Beta(α = 1,β = 1)

βββ ∼ Gamma(α = 3,β = 0.5)

φφφ ∼ Beta(α = 2,β = 15)

γγγwww,γγγccc ∼ Normal(µ = 0,σ = 1)

In Study 1: γγγ,γγγ000 ∼ Normal(µ = 0.5,σ = 3)

In Study 2: γγγ,γγγ000 ∼ Normal(µ = 0,σ = 3)

In Study 3: γγγ,γγγ000 ∼ Normal(µ = 0.5,σ = 1)
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We performed fitting using the python PyMC4 package version 4.1.3 (Salvatier, Wiecki, &362

Fonnesbeck, 2016) via the no-U-Turn sampler, which was the state-of-the-art Markov-chain Monte363

Carlo sampling method to estimate parameter posteriors. For each model, we ran 3 chains of 1000364

tuning samples (which were discarded) and 2000 kept samples used to estimate the posterior dis-365

tributions. Therefore in total 6000 samples were used to represent each parameter’s posterior366

distribution. For diagnostic checks, we required R̂ ≤ 1.01, BFMI ≥ 0.2 for all chains, a suffi-367

ciently large effective sample size (ESS ≥ 400) for all parameters, and that no divergences were368

observed. Besides these computational diagnostics, we also performed prior predictive checks to369

make sure that the priors had a reasonable level of informativeness, demonstrated that the fitting370

procedure could recover parameters that we generated from the prior distributions, and ensured371

that each model overall fit best to the data simulated by themselves, not by other candidate models372

(model recovery). For prior predictive checks and model validation (Figure 2, S2), we simulated373

each model 20 times per subject. For parameter recovery (Figure S5, S6, S7) and model recovery374

(Table S3, S4), we only simulated each model once per subject. We fit the data to various compu-375

tational agents with different learning parameters and compared them using the Widely Applicable376

Information Criterion (WAIC; Watanabe, 2013). All point estimates of parameter values per par-377

ticipant were the mean of the fitted posterior distributions and different parameters are minimally378

correlated across subjects (Figure S8). The human data used for model fitting did not include the379

first iteration because the learning performance should be chance level at the first iteration and thus380

was not informative to model fitting.381

3 Results382

First, we confirmed that participants were able to learn the stimulus-action-reward mappings across383

the course of the experiment (Figure 2, 4). We ran a mixed-effect linear regression with the av-384

erage rewardingness of actions as the dependent variable (equation 1, Table S5-S6). The average385

reward generated by participants in response to a stimulus increased with the number of stimulus386

appearances, as suggested by the significant positive main effect of stimulus iteration (Study 1: b387
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Figure 2: Main behavioral results for Study 1 & 2: A, B) learning curve of Study 1 (n = 41 in
advantageous condition and n = 53 in disadvantageous condition) and Study 2 (n = 55 in advan-
tageous condition and n = 36 in disadvantageous condition). Participants overall converged to
generating higher total reward. Curves reflect the rewardingness of actions as a function of the
number of times that each stimulus was presented, plotted separately for each split condition (per-
centage of reward given to the participant). Dashed lines are the simulated learning curve by the
best-fitting SPRL model. C) overall rewardingness of actions averaged within the advantageous
and disadvantageous conditions. People generated fewer rewards under disadvantageous inequity
where they received the smaller share of reward. D) overall entropy of actions averaged within
the advantageous and disadvantageous conditions. People’s actions were less deterministic under
disadvantageous inequity where they received the smaller share of reward. This suggests that peo-
ple were not simply voluntarily choosing less rewarding actions but indeed had more uncertainty
during learning. All error bars reflect the s.e.m.

= 0.105 , χ2(1) =551.94 , p < 0.001, 95% CI = [0.0962, 0.1138]; Study 2: b = 0.108, χ2(1) =388

541.39, p < 0.001, 95% CI = [0.0989, 0.1171]; Study 3: b = 0.253, χ2(1) = 1235.72, p < 0.001),389

95% CI = [0.2389, 0.2671]. These results indicate that, overall, participants succeeded in learning390

the stimulus-response-reward mappings.391
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3.1 Inequity in reward distribution affects learning performance392

Although participants succeeded overall in learning, so as to generate more reward across the393

course of the experiment, we observed a significant main effect of inequity type on reward (Fig-394

ure 2, 4). Specifically, across all three studies, participants obtained significantly lower overall395

reward in the disadvantageous inequity condition (equation 1, Table S5-S6) than the advantageous396

inequity condition (Study 1: b = 0.134, χ2(1) = 12.00, p <0.001, 95% CI = [0.0582, 0.2098], Study397

2: b = 0.178, χ2(1) = 18.51, p = <0.001, 95% CI = [0.0969, 0.2591], Study 3: b = 0.143, χ2(1) =398

16.83, p < 0.001, 95% CI = [0.0747, 0.2113]). Additionally, we observed a significant interaction399

between iteration and inequity type (equation 1, Table S5-S6), such that participants learned more400

slowly in the disadvantageous condition (Study 1: b = 0.022, χ2(1) = 24.47, p < 0.001, 95% CI401

= [0.0133, 0.0307], Study 2: b = 0.043, χ2(1) = 85.58, p < 0.001, 95% CI = [0.0339, 0.0521],402

Study 3: b = 0.008, χ2(1) = 1.18, p = .278, 95% CI = [-0.0064, 0.0224]). There are at least two403

possible explanations for the observation that participants generated lower reward in the disad-404

vantageous condition. One possibility is that participants learned less well which stimulus-action405

combinations were most rewarding. Another possibility is that participants deliberately chose ac-406

tions that generated lower overall reward in these conditions. To distinguish these possibilities,407

we compared the overall Shannon entropy of participants’ choice in the advantageous condition408

with the entropy in the disadvantageous condition. Shannon entropy is a measurement of how409

deterministic (or how stochastic) a random variable is. The higher the entropy is, the less deter-410

ministic participants’ choices are. If the sole reason for participants generating less reward in the411

disadvantageous condition was that they deliberately chose the less rewarding actions, we would412

not see any difference in the entropy between advantageous and disadvantageous conditions. Their413

actions would be equally deterministic in both conditions but deterministic towards more reward-414

ing actions in the advantageous condition. However, we did identify a significantly higher entropy415

in the disadvantageous condition through Wilcoxon test (Study 1: U = 784, p = 0.021, Study 2: U416

= 667, p = 0.009, Study 3: U = 434, p < 0.001), suggesting that participants’ choices were indeed417

less deterministic in the disadvantageous condition (Figure 2, 4). The SPRL model was also able418
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Figure 3: Modeling results of Study 1 (n = 41 in advantageous condition and n = 53 in disadvan-
tageous condition) and Study 2 (n = 55 in advantageous condition and n = 36 in disadvantageous
condition): A, B) The trial-by-trial difference in WAIC between the better fit model and worse fit
model increases over the course of learning, suggesting the effect of social information enhances
over learning. Figure B) also suggests that the effect of inequity was stronger under disadvanta-
geous inequity. C) Fitted weight of the competence and warmth rating: no clear directional effect
of the perceived warmth or competence in Study 1 and 2. D) Fitted learning rate of the baseline
model: further confirms the behavioral result that people learned slower under disadvantageous
inequity. Each dot represents a point estimate for one subject obtained as the mean of the posterior
distribution of the parameters. All error bars reflect the s.e.m.

to simulate this effect in entropy (Figure S4). We discuss more in depth some other possible in-419

terpretations in the supplemental (section S1; Figure S1). Put together, these behavioral evidence420

suggest that learning was more disrupted in the disadvantageous inequity condition. We further421

confirmed this result by comparing the fitted learning rate parameter of the baseline reinforcement422

learning models (Figure 3, 4). Wilcoxon test supports that the learning rates of participants in the423

disadvantageous condition are lower than those in the advantageous condition (Study 1: U = 1578,424

p < 0.001, Study 2: U = 1520, p < 0.001, Study 3: U = 1823, p < 0.001).425
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3.2 Learning performance is more sensitive to the self-other difference in reward under426

disadvantageous inequity427

We also found a significant positive main effect of the split percentage on the reward generated428

by participants (Study 1: b = 0.089, χ2(1) = 393.78, p < 0.001,95% CI = [0.0802, 0.0978], Study429

2: b = 0.054, χ2(1) = 136.65, p < 0.001,95% CI = [0.0449, 0.0631], Study 3: b = 0.044, χ2(1)430

= 38.68, p < 0.001,95% CI = [0.0301, 0.0579]). This suggests that participants overall learned431

better when they earned more percentage of the reward. We also found a significant interaction432

effect, suggesting that the effect of split percentage was stronger in the disadvantageous condition433

(Study 1: b = -0.043, χ2(1) = 93.58, p < 0.001,95% CI = [-0.0517, -0.0343], Study 2: b = -0.047,434

χ2(1) = 102.25, p < 0.001,95% CI = [-0.0561, -0.0379], Study 3: b = -0.030, χ2(1) = 17.44, p <435

0.001,95% CI = [-0.0441, -0.0159]).436

To further explore this interaction effect, we fit two mixed-effect linear regression separately437

in the advantageous and disadvantageous conditions (equation 2, Table S7-S8). In the disadvan-438

tageous condition, we removed the split condition in Study 1 where the participant obtained 0%439

of the reward and in Study 2 where the participant obtained 50%, to make sure the effect was440

not solely driven by these extreme conditions. Across 3 studies, we observed a significant pos-441

itive effect of split (Study 1: b = 0.058, χ2(1) = 16.77, p < 0.001,95% CI = [0.0302, 0.0858],442

Study 2: b = 0.068, χ2(1) = 15.62, p < 0.001,95% CI = [0.0343, 0.1017], Study 3: b = 0.064,443

χ2(1) = 9.16, p = 0.002,95% CI = [0.0226, 0.1054]). In the advantageous inequity condition,444

however, a significant effect of split is found only under reduced cognitive load, in Study 3: (Study445

1: b = 0.018, χ2(1) = 1.53, p = 0.216,95% CI = [-0.0105, 0.0465], Study 2: b = -0.008, χ2(1) =446

0.38, p = 0.538,95% CI = [-0.0334, 0.0174], Study 3: b = 0.046, χ2(1) = 4.45, p = 0.035,95%447

CI = [0.0033, 0.0887]). Through trial-by-trial comparison of the computational models (Figure 3),448

we confirmed in Studies 1 & 2 that the inequity-weighted model outperforms the baseline model449

more so in the disadvantageous condition (Study 1: t(57.3) = -3.43, p = 0.001, d = 0.713, 95%CI450

= [-1.063, -0.363], Study 2: t(36.2) = -2.30, p = 0.027), d = -0.492, 95%CI = [-0.935, -0.049].451

The comparison in Study 3 is not significant, but may be due to the reduced power as a result of452
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fewer split conditions (t(50.7) = -1.51, p = 0.137, d = -0.310, 95%CI = [-0.714, 0.094]). Model453

simulation also showed that the best-fitting model (SPRL) was able to qualitatively reproduce the454

effect of split percentage (Figure 2, 4) but the baseline models were not able to reproduce the effect455

(Figure S2).456

3.3 Effects of inequity arise early during learning and grow as learning continues457

Through model comparison in Studies 1 & 2, we see that the inequity-weighted model outper-458

forms the baseline model as early as the 4th iteration of the stimulus (Study 1: t(93) = 3.54,459

p < 0.001, d = 0.365, 95%CI = [0.158, 0.572], Study 2: t(90) = 2.25, p = 0.027, d = 0.236,460

95%CI = [0.026, 0.446]). The effect also increases over time (Figure 3). We tested this using461

a mixed-effect linear regression with the model-fit metrics as the dependent variable (equation462

4, Table S11-S12). In both Studies 1 & 2, we see a significant positive main effect of stimu-463

lus iteration (Study 1: b = 0.004, χ2(1) = 86.25, p < 0.001,95% CI = [0.0032, 0.0048], Study464

2: b = 0.002, χ2(1) = 49.42, p < 0.001,95% CI = [0.0014, 0.0026]), suggesting the inequity-465

weighted model outperforms the baseline more in later learning trials. Additionally, the effect is466

stronger under disadvantageous inequity, as suggested by the significant interaction effect (Study467

1: b = -0.004, χ2(1) = 79.48, p < 0.001,95% CI = [-0.0049, -0.0031], Study 2: b = -0.002,468

χ2(1) = 42.54, p < 0.001),95% CI = [-0.0026, -0.0014].469

3.4 Social partner identity impacts learning more systematically when cognitive load is re-470

duced471

We examined whether the perceived warmth and competence of the social partner affected how the472

social distribution of reward influenced learning. In Study 1 and Study 2, we observed mixed evi-473

dence. On the one hand, the full SPRL model, which integrates social perception ratings, prevailed474

as the best-fitting computational model (Figure 3; Table S2). On the other hand, the fitted weight475

parameter of perceived warmth and competence was not significantly different from 0 (Figure 3;476

Table S1). In Study 1 and Study 2, these coefficients were not significantly different from 0 in477

the advantageous condition (Study 1: tcompetence(40) = −0.736, p = 0.466 , d = -0.115, 95%CI478
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Figure 4: Results of Study 3 (n = 47 in advantageous condition and n = 48 in disadvantageous
condition): A) Learning curve. B, C) Overall rewardingness of actions and action entropy averaged
within the advantageous and disadvantageous conditions. Replicating Study 1 and Study 2, people
learned worse under disadvantageous inequity. D, E) The trial-by-trial model comparisons. The
SPRL model significantly outperformed the models without considering social perception ratings,
confirming the elevated effect of social perception in Study 3. Moreover, the effect is also stronger
under the disadvantageous condition. F, G) Fitted learning rate of the baseline model and effects
of social perception of the SPRL model: replicating Study 1 and 2, the learning rate was lower
under disadvantageous inequity. However, we saw a significant positive effect of both perceived
warmth and perceived competence in the disadvantageous condition, suggesting that the effect of
social perception enhanced under smaller cognitive load during learning. Each dot represents a
point estimate for one subject obtained as the mean of the posterior distribution of the parameters.
All error bars reflect the s.e.m.

= [-0.423, 0.193]; twarmth(40) = 1.45, p = 0.155, d = 0.226, 95%CI = [-0.085, 0.537], Study479

2: tcompetence(54) = 0.320, p = 0.75, d = 0.043, 95%CI = [-0.222, 0.308]; twarmth(54) = 0.502,480

p = 0.618, d = 0.068, 95%CI = [-0.197, 0.333]) or the disadvantageous condition (Study 1:481

tcompetence(52) = 0.050, p = 0.96, d = 0.007, 95%CI = [-0.263, 0.277]; twarmth(52) = 0.296,482

p = 0.768, d = 0.041, 95%CI = [-0.230, 0.312], Study 2: tcompetence(35) = −0.570, p = 0.572,483

d = -0.095, 95%CI = [-0.423, 0.233]; twarmth(35) = 1.52, p = 0.136, d = 0.253, 95%CI = [-0.077,484

0.583]).485
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However, in Study 3 where the cognitive load is reduced (Figure 4), we found a signifi-486

cant positive effect of both perceived warmth and perceived competence (Table S1) in the dis-487

advantageous condition on the rewardingness of actions (tcompetence(47) = 2.25, p = 0.029, d488

= 0.325, 95%CI = [0.038, 0.612]; twarmth(47) = 3.34, p = 0.002, d = 0.482, 95%CI = [0.194,489

0.770]). Similarly, mixed-effect linear regression (equation 1, Table S5-S6) also revealed a signifi-490

cant main effect of both perceived warmth and perceived competence on the rewardingness of ac-491

tions during learning (bcompetence = 0.031, χ2(1) = 12.10, p < 0.001,95% CI = [0.0135, 0.0485];492

bwarmth = 0.042, χ2(1) = 25.52, p < 0.001,95% CI = [0.0257, 0.0583]). The overall effect of493

perceived warmth was stronger in the disadvantageous condition (b = −0.069, χ2(1) = 69.34,494

p < 0.001,95% CI = [-0.0852, -0.0528]). The overall effect of perceived competence was also495

stronger in the disadvantageous condition (b = −0.028, χ2(1) = 9.77, p = 0.002,95% CI = [-496

0.0456, -0.0104]). Notably, these effects remained significant when we ran the same regression on497

simulated data from the SPRL model with the fitted parameter values (Table S13-S14). Moreover,498

they disappeared when using data simulated by the IRL model, which ignored information about499

perceived warmth and competence (Table S13-S14).500

Similar to the effect of inequity, the effect of social perception on learning also increases over501

the course of learning, but the increase is stronger under disadvantageous inequity. We support502

this again with mixed-effect linear regression on the model comparison metrics (equation 4, Ta-503

ble S11-S12) where we see a positive main effect of stimulus iteration (b = 0.001, χ2(1) = 14.65,504

p < 0.001,95% CI = [-0.0852, -0.0528]) and also a significant effect of its interaction with inequity505

type (b =−0.0008, χ2(1) = 4.53, p = 0.033,95% CI = [-0.0015, -0.0001]). One possible interpre-506

tation of these results is that the perceived warmth and competence did shape how inequity affects507

learning across all three studies, but individual differences in the nature of this effect precluded its508

detection in model-free, group-level analyses in Study 1 and 2. In Study 3, where cognitive load509

was reduced, we found evidence for a more systematic effect of social perception on learning at510

the group level.511
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4 Discussion512

People often rely on learned reward contingencies to guide their decisions, making factors that513

impact the learning process important precursors to decisions. Through a reinforcement learning514

task, we found that inequity of the distribution of reward across oneself and another person, as well515

as the identity of that person, shaped people’s ability to learn from rewards.516

First, people learned faster and more successfully overall when they received the larger share517

of the reward (compared to the other person) than when they received the smaller share of the518

reward (compared to the other person), even controlling for the overall reward size to self (Study519

2). This result is especially potent given that we manipulated inequity type between-subjects,520

ruling out the possibility that participants could have contrasted different inequity conditions and521

adjusted their internal learning incentives accordingly. Moreover, this shows that the impact of522

inequity (advantageous vs disadvantageous) on valuation during learning does not show range523

adaptation to the possible range of the degree of inequity (Bavard et al., 2021). In other words,524

disadvantageous inequity decreases the value of the rewards without needing a separate reference525

condition in which the same participants experience advantageous inequity. In this way, the effect526

of disadvantageous versus advantageous inequity on learning can be thought of as “absolute” rather527

than “relative”.528

Second, people were more sensitive to the specific percentage of the reward given to them-529

selves when that percentage was less than (compared to when it was more than) 50%. For example,530

the difference between receiving 20% and 40% of the reward (a 20% difference) was greater, in531

terms of its impact on learning, than the difference between receiving 60% and 80% (also a 20%532

difference). This could be because disadvantageous inequity prompts people to be more sensi-533

tive to the split percentage. We note that this finding is especially striking as it was replicated in534

Study 2, in which impaired learning under disadvantageous inequity cannot be explained by the535

amount of reward personally received by the participant because that amount was held constant.536

In this study, more total reward (across the participant and the partner) is actually generated in537

the disadvantageous condition than in the advantageous condition, yet participants still learn less538
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effectively in this condition. In other words, participants’ learning seems to be more driven by539

social comparison than by total welfare during the learning task. Future studies could explore a540

within-subject manipulation on the design of Study 2, where a tradeoff between inequity and total541

reward exists. It would be especially interesting to see to test the possibility that split percentage542

may have a non-continuous effect on learning across the range from 0% to 100%.543

Third, a more systematic effect of social perception on learning emerged when cognitive load544

was reduced. We saw a significantly positive effect of perceived warmth and competence on learn-545

ing under the disadvantageous condition only in Study 3, where the stimulus space was reduced546

from 5 to 2. Because the parameter recovery result in Study 3 did not seem to differ substantially547

from Studies 1 and 2 (Figure S5,S6,S7), it is unlikely that this difference arose because the so-548

cial perception weight parameters were harder to recover in Studies 1 and 2 compared to Study 3.549

Moreover, it is worth noting that the SPRL model, which incorporates social perception as well as550

inequity information, emerged as the best fitting model to participants’ behavior even in Studies551

1 and 2. This may suggest that while perceived warmth and competence have somewhat idiosyn-552

cratic effects on learning across individuals when the task is especially taxing (perhaps due to553

different reliance on heuristics and/or different levels of working memory capacity), these effects554

are more systematic when cognitive load is reduced. These possible interpretations are preliminary555

and open to more direct investigation in future research.556

We would like to highlight some broader implications of this study. First, the observation557

that disadvantageous inequity hampers learning in an absolute sense—i.e., without requiring direct558

comparison to advantageous inequity—speaks to the potential importance of the current findings in559

ecological settings, where a given instance of learning from shared rewards is likely to be charac-560

terized by a single type of inequity. Second, the finding that social contextual information shapes561

reinforcement learning adds on to the body of evidence that the reinforcement learning system,562

despite long being considered a low-level implicit cognitive system, is impacted by higher-level563

cognition – in the case, social cognition (Collins & Frank, 2012; Ham, McDougle, & Collins, 2024;564

Master et al., 2020). Third, our studies contribute to a growing trend toward integrating models of565
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cognition and models of economic behavior (Andrade, Gaballo, Mengus, & Mojon, 2019; Andre,566

Pizzinelli, Roth, & Wohlfart, 2022; Barberis & Jin, 2023; Jenkins et al., 2018; Kobayashi et al.,567

2022). We tested experimentally how the distribution of rewards impacts reward values relevant to568

learning and designed formal models that make it possible to characterize this impact.569

Finally, these findings point to a possible gap between subjective value generated social570

decision-making and social learning that warrants further investigation (Barron & Erev, 2003;571

Garcia, Cerrotti, & Palminteri, 2021; Hertwig, Barron, Weber, & Erev, 2004; Hertwig & Erev,572

2009; Martin, Gonzalez, Juvina, & Lebiere, 2014). Although research on social decision-making573

has shown that others’ perceived warmth and competence have different effects on people’s equity574

preferences (Jenkins et al., 2018), the current studies found that perceived warmth and compe-575

tence both had the same positive effect on reinforcement learning. This gap may be due to how576

group processes such as social status impact valuations differently during learning than descriptive577

decision-making. Future research is needed to further investigate how contextual effects on valua-578

tion during social decision-making relate to contextual effects on learning from shared rewards.579

4.1 Limitations580

One potential limitation of this study is the hypothetical nature of the monetary reward as well581

as the social partner. Participants were asked to imagine that the rewards were real and that a582

portion was actually given to another person. Research comparing real to hypothetical mone-583

tary rewards generally finds consistent patterns of behavior across the two contexts (Kühberger,584

Schulte-Mecklenbeck, & Perner, 2002; Wiseman & Levin, 1996), and when they differ, hypothet-585

ical contexts typically have smaller effects (Camerer & Hogarth, 1999). In particular, although586

there is sometimes an overall shift from hypothetical to real rewards (e.g., in mean levels of gen-587

erosity), manipulated factors (e.g., inequity, target identity) typically have similar effects in both588

contexts (Jenkins et al., 2018; Kobayashi et al., 2022). We also acknowledge that all participants589

are young adults in the United States, leaving open questions about the degree to which findings590

from our sample generalize to people situated within different socioeconomic systems.591
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5 Data availability592

All experiment materials, data, and analysis code are publicly available at https://osf.io/593

xcwqd/?view_only=02df3a86b50f488a9feb285ff3d0ac93.594

6 Code availability595

All experiment materials, data, and analysis code are publicly available at https://osf.io/596

xcwqd/?view_only=02df3a86b50f488a9feb285ff3d0ac93.597
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