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Abstract8

How automatic is reinforcement learning (RL)? Here, using a recent computational9

framework that separates contributions from working memory versus RL during10

instrumental learning, we asked if taxing higher executive functions influences a11

putatively lower-level, procedural RL system. Across three experiments, we found that12

dual-tasking could indeed disrupt RL, even when isolating RL from working memory13

contributions to behavior. These results speak to methodological considerations in the14

use of dual tasks during learning, suggesting that cognitive load can interfere with15

multiple learning and memory systems simultaneously. Moreover, our results point to a16

less constrained conception of RL as a putatively low-level procedural system,17

supporting a view that tight links exist between executive function and subcortical18

learning processes.19

Keywords: Reinforcement learning; Working memory; Executive control;20

Computational modeling; Dual-Tasks21
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Dual Effects of Dual-Tasking on Instrumental Learning22

Introduction23

The study of instrumental learning (learning to select actions that lead to24

rewards) typically focuses on the reinforcement learning process (RL), which is well25

captured by a computational framework that formalizes reward as a teaching signal to26

estimate expected values (Rescorla, 1972; Sutton & Barto, 1998). Although RL is a27

powerful learning system, human beings also utilize higher-level executive functions28

during instrumental learning tasks, such as working memory (WM) and attention. A29

growing body of research suggests that executive functions like working memory and30

attention shape the learning of simple instrumental policies alongside reinforcement31

learning (A. G. Collins & Frank, 2012; Leong, Radulescu, Daniel, DeWoskin & Niv,32

2017; Rmus, McDougle & Collins, 2021; A. Yoo & Collins, 2022). Executive functions33

typically require top-down cognitive control, process information explicitly, and operate34

on a shorter time span, whereas reinforcement learning operates more implicitly, and35

over a longer time span (A. G. Collins, 2018). For example, executive functions could36

aid instrumental learning by directing attention to relevant reward signals and37

contextual cues, and encode these sources of information explicitly in working memory38

(such as explicitly remembering that one action yielded a reward but another action did39

not). Due to the intrinsic capacity limitations of working memory, however, people are40

unlikely to be able to explicitly remember sufficient information about reward-action41

contingencies over longer periods of time. Nevertheless, even without explicit memory,42

people are still able to implicitly learn to choose more rewarding actions over less43

rewarding ones (Cortese, Lau & Kawato, 2020; Gabrieli, 1998; Pessiglione et al., 2008;44

Shohamy, 2011; Wilkinson & Jahanshahi, 2007), as demonstrated, for example, by their45

ability to learn more information than can be held in working memory (A. G. Collins &46

Frank, 2012). This phenomenon is typically attributed to the reinforcement learning47

(RL) process.48

Across various populations, studies have shown that working memory and49

reinforcement learning indeed operate in parallel during simple instrumental learning50
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tasks, and compete for action control (A. G. Collins & Frank, 2012; Master et al., 2020;51

Viejo, Khamassi, Brovelli & Girard, 2015). These findings can be formalized in52

computational models that include both RL and WM - such models are designed to53

capture human behavioral and neural data in simple instrumental learning contexts54

(A. G. Collins, Ciullo, Frank & Badre, 2017; A. G. Collins & Frank, 2018; Viejo et al.,55

2015).56

While it is clear that both WM and RL can contribute to human reward learning,57

what is poorly understood, however, is whether reinforcement learning processes are58

functionally independent of executive functions, or if the two systems interact with each59

other. Past research has typically framed RL as a closed-loop, lower-level process that60

does not strongly rely on higher-level cognitive inputs. That is, RL is often thought of61

as being a procedural learning system. However, recent research has challenged this62

view by suggesting multiple ways in which RL computations appear to be tightly linked63

to executive functions, including attention (Leong et al., 2017; Niv et al., 2015) ,64

abstract motivational goals (McDougle, Ballard, Baribault, Bishop & Collins, 2021;65

Sinclair, Wang & Adcock, 2023), and working memory (A. Collins, Ciullo, Frank &66

Badre, 2017; A. G. Collins, 2018; A. G. Collins & Frank, 2018; Rmus et al., 2021;67

A. Yoo & Collins, 2022). To our knowledge, minimal prior work has applied causal68

experimental tests on links between executive functions and reinforcement learning69

processes that perturb executive function while also measuring its direct contributions70

to learning. Without doing so, it is difficult to know if perturbing an executive function71

(e.g., WM) during learning simply disrupts that specific function’s contributions to72

behavior, or if ’downstream’ effects on the RL system are also induced. If executive73

functions contribute to instrumental learning independently, taxing them would not74

impact the reinforcement learning process, and indeed only impact learning behavior75

through executive function contributions themselves. On the other hand, if RL is not76

fully separable from parallel executive function contributions to learning, perturbing77

executive functions should additionally impact the reinforcement learning process. This78

impact on RL could be either facilitating (leading to faster learning of rewarding79
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actions) or inhibitory (leading to slower learning).80

In three experiments, we tested these hypotheses by directly perturbing executive81

functions using a classic “dual-task” manipulation during an instrumental learning82

paradigm that is optimized to disentangle RL from WM. Dual-tasks are a common83

procedure for taxing executive function and have been deployed across a range of84

cognitive and learning tasks (Baddeley, 1992; D’Esposito et al., 1995; Economides,85

Kurth-Nelson, Lübbert, Guitart-Masip & Dolan, 2015). We designed two “dual-task”86

conditions which only differed in when the dual task occurred within the flow of the87

experiment: “Task-Overlap” and “Task-Switch”. The “Task-Overlap” condition directly88

taxed executive function by presenting extra information for the participant to89

remember while simultaneously performing the learning task. The “Task-Switch”90

condition freed participants from any extra working memory load during the choice and91

feedback process, but required them to engage in the recruitment of executive functions92

between learning trials. We performed 3 experiments: In the first 2, we compared the93

(standard) Single-Task condition with the “Task-Overlap” condition, and varied the94

single-task inter-trial interval across experiments to control for timing differences95

between single- and dual-task settings (see Methods). In the third experiment, we96

compared the “Task-Overlap” condition and the “Task-Switch” condition to each other.97

Our overarching goal was to use a computational modeling framework (the98

"RLWM" model) that captures reward learning behavior with separable WM and RL99

modules (A. G. Collins & Frank, 2012), allowing us to examine how taxing executive100

function through a dual task might affect different sub-components of instrumental101

learning. The "RLWM" model was crucial for testing the effect of perturbing executive102

functions on reinforcement learning, as behavioral data alone (such as average accuracy103

metrics) can depend on both mechanisms. All experiment materials, data, and analysis104

code are publicly available at105

https://osf.io/zutka/?view_only=022f6bc1c9324df790eabe24e200286d.106

https://osf.io/zutka/?view_only=022f6bc1c9324df790eabe24e200286d
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Methods107

Participants108

Participants in all three experiments (N1 = 31, N2 = 31, N3 = 33) were recruited109

through the University of California Berkeley’s SONA platform and earned class credit110

for their participation. In experiment 1, 21 females and 10 males participated with a111

mean age of 20.47. In experiment 2, 17 females and 14 males participated with a mean112

age of 21.32. In experiment 3, 26 females and 7 males participated with a mean age of113

21.43. No participants were excluded. The experimental protocol was approved by the114

university’s local ethics committee. Written, informed consent was obtained from all115

participants prior to their participation.116

Experimental Procedure117

Experiment 1. Participants were seated in front of a computer monitor and118

had their hands comfortably positioned on a computer keyboard. They then proceeded119

to the main experiment which was a computerized task written using Psychtoolbox120

(version 3.0.10) on Matlab (version R2016a). The main goal for the participants was to121

learn which key (out of 3 candidate keys) on the keyboard was associated with each122

stimulus presented on the screen. We used images from (A. G. Collins et al., 2017) as123

stimuli in our task.124

After instruction and practice (aimed to familiarize the participant with the task),125

the task had two phases: learning, and testing. In the learning phase, participants126

attempted to learn multiple stimulus-response pairs in separate, independent blocks. In127

the testing phase, all stimuli from all learning phase blocks were displayed again in a128

random sequence, and participants responded but did not receive correct/incorrect129

feedback, allowing us to probe long-term retention of learned information, independent130

of WM.131

The learning phase (figure 1) consisted of 10 independent blocks of trials, but the132

last block only served as a buffer between the learning and the testing phase and thus133

was excluded from later analyses. In each trial, participants saw an image presented on134

https://psychology.berkeley.edu/students/undergraduate-program/research-participation-program
http://psychtoolbox.org/versions
https://www.mathworks.com/products/new_products/release2016a.html
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the screen and pressed one of the three keys in response. A block consisted of either 2,135

3, or 6 image-key associations to learn and 12 iterations per image, pseudo-randomly136

interleaved to control for an approximately uniform distribution of delays between137

iterations of the same stimulus. Each block used a separate set of images to be learned,138

consisting of easily distinguished and named examplars of a category (e.g. vegetables,139

farm animals, etc. Aspen H Yoo, Keglovits and Collins, 2023). At the beginning of each140

block, participants saw all the images that they would encounter in that block for141

familiarization. Across blocks, the set size of the instrumental learning task was varied142

among 2, 3, and 6 (A. G. Collins & Frank, 2012). That is, in each block participants143

had to either learn 2, 3, or 6 stimulus-response associations, a manipulation that is144

critical to delineating WM and RL in our modeling framework (A. G. Collins & Frank,145

2012). Stimuli were never repeated across blocks. The learning phase also included two146

conditions: Dual-Task and Single-Task, across blocks. In the Dual-Task condition, two147

blocks were performed at each set size, and in the Single-Task condition, one block was148

performed each at set sizes 3 and 6, and two blocks at set size 2. The block order was149

pseudo-randomized except the last (10th) block. The last block, which was used as a150

buffer, always had set size 2 and trials in the Single-Task condition.151

In the Dual-Task condition, a secondary task — the number judgment task — was152

performed in addition to the instrumental learning task (Economides et al., 2015). For153

this task, two numbers were simultaneously displayed side-by-side with varying font154

sizes and integer values (e.g., a large font “2” on the left and a smaller font “6” on the155

right). Participants were asked to make either a “size” or “value” judgment of the156

number stimuli by pressing a key that corresponded to the position of either the157

visually larger number (e.g., “2”, or left button) or the higher-value number (e.g., “6”,158

right button; figure 1) . The particular judgment required (value versus size) was159

randomly selected on each trial. Approximately 80% of trials consisted of conflict trials,160

where the visually larger integer was smaller in value and vice-versa. The specific two161

integers presented were drawn randomly from [0, 9] without replacement.162

In Dual-Task blocks, the trial structure was as follows: Participants viewed one of163
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the learning stimuli on the screen and two numbers positioned above the stimulus164

(Figure 1). The numbers were displayed for 0.3 seconds. The learning stimulus was165

continually displayed either until the participant responded with one of the three166

possible actions (“j”, “k”, or “l” with their right index, middle, or ring finger), or if 1.5167

seconds had elapsed. If the response designated as correct for that stimulus was made,168

+1 “points” were displayed on the screen. If an incorrect response was given, 0 points169

were displayed. If the reaction time exceeded 1.5 seconds, the message “please respond170

faster” was displayed, and if the response was faster than 0.15 seconds the message “too171

fast” was displayed. The feedback to the instrumental learning task was displayed for 1172

second. Critically, after receiving feedback for the instrumental learning task, the173

participant was then asked to make either a “size” or “value” judgment of the174

previously-displayed numbers (“a” or “d” with their left ring and index fingers,175

corresponding to the number displayed on the left or right, respectively). Participants176

had up to 1 second to respond to the number judgment task, but if they responded in177

less than 1 second, they would still need to wait until the end of the second before178

seeing feedback. Feedback was then given for the number judgment task (“correct”,179

“incorrect”, “please respond faster”, or “too fast”) and was displayed for 1 second as180

well. An inter-trial interval of 1.5 seconds (minus the reaction time of the instrumental181

learning task) then occurred, which consisted of a white fixation cross displayed in the182

center of the screen. The interval was computed as such to control for the total trial183

duration. Therefore the total trial duration was 4.5 seconds.184

In Single-Task blocks, participants didn’t need to perform the number judgment185

task, but only needed to perform the instrumental learning task. Therefore, there was186

no number displayed above the learning stimulus and there was no question about the187

numbers following the feedback for the instrumental learning task. To ensure that the188

total trial length was the same as in the Dual-Task condition, the inter-trial interval189

was 3.5 seconds minus the reaction time.190

To become familiarized with the tasks, participants performed the practice phase191

with three unique practice rounds before the learning blocks began: They first practiced192
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the instrumental learning task on its own (10 trials), followed by the “number193

judgment” secondary task on its own (10 trials), then the Dual-task condition (10194

trials). Experimenter instructions emphasized that participants should focus on195

performing equally well on both tasks in all blocks.196

After the learning phase, participants proceeded to perform a surprise testing197

phase. In the testing phase, the screen first displayed the instruction telling them that198

they would see images that they had encountered previously and that they needed to199

respond by retrieving the action that they originally learned was correct for that image200

(j, k, or l key). Similar to the learning phase, participants’ response to a trial was valid201

if made between 0.15 and 1.5 seconds from the onset of the image. Unlike in the202

learning phase, however, no feedback followed their actions and there was no inter-trial203

interval. The testing phase was not divided into blocks, and all the images in the204

learning block were shuffled and presented in sequence at the center of the screen. Each205

image appeared four times in total in this shuffled sequence. The testing phase was206

included to provide a measure of long-term associations formed through RL, without207

immediate contributions from working memory processes (contrary to the learning208

phase where information was available within a short time frame). Because the209

information encoded in the RL system is retained for a longer period of time than the210

information encoded in working memory, we can attribute participants’ performance in211

the testing phase more to the learning outcome of the RL system (A. G. Collins, 2018).212

Experiment 2. While experiment 1 controlled for the total trial duration213

between the Single-Task and the Dual-Task condition, the inter-trial intervals in the214

Single-Task condition were substantially longer than in the Dual-Task condition,215

potentially introducing a confound. In experiment 2, we instead controlled for the216

inter-trial interval between the two conditions. Experiment 2 (figure 1) was identical to217

experiment 1 except that the inter-trial interval in the Single-Task condition was the218

same as the inter-trial interval in the Dual-Task condition, which was 1.5 seconds minus219

the reaction time. Therefore, unlike in Experiment 1, where the total trial duration was220

the same between the two conditions, the trial duration of the Single-Task condition221
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was shorter than the trial duration of the Dual-Task condition in Experiment 2.222

Experiment 3. While the previous 2 experiments controlled for the differences223

in inter-trial interval and trial duration, they could not identify whether the potential224

Dual-Task effect comes from simply having to switch tasks during learning, or from225

having to hold two numbers in memory while making decisions. To disentangle these226

two possibilities, we designed experiment 3 (figure 1).227

The learning phase of experiment 3 did not have Single-Task conditions, but228

instead, it consisted of 2 different Dual-Task conditions: Task-Overlap and Task-Switch.229

The Task-Overlap condition is exactly the same as the Dual-Task condition in230

experiments 1 and 2. Thus, in Task-Overlap blocks, the number task and instrumental231

task were performed simultaneously – the number sizes and values had to be encoded232

and maintained while the correct stimulus-response association was being learned233

and/or retrieved. In contrast, in Task-Switch blocks, the same two tasks were234

performed but in succession – a complete trial of the instrumental learning task was235

performed (learning stimulus, response, feedback), followed by a complete trial of the236

number judgment task (number stimuli, response, feedback). In the instrumental237

learning task, same as the Single-Task trials in experiments 1 and 2, participants viewed238

one of the learning stimuli on the screen without the additional two numbers above239

them. The learning stimulus was continually displayed either until the participant240

responded with a valid keypress, or if 1.5 seconds had elapsed. The feedback was then241

displayed for 1 second. After having received feedback for the instrumental learning242

task, the participant was then asked to make either a “size” or “value” judgment of two243

numbers. Unlike in the Task-Overlap condition, the two numbers were displayed right244

above the question, so participants could make the judgment while looking at the two245

numbers. Participants had also up to 1 second to respond to the number judgment246

task, but if they responded less than 1 second, they would still need to wait until the247

end of the second before seeing feedback. The feedback was displayed for 1 second as248

well. The feedback mechanism for both the instrumental learning task and the number249

task is the same as in experiments 1 and 2. Afterward, an inter-trial interval of 1.5250
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seconds (minus the reaction time of the instrumental learning task) occurred. The251

interval was computed as such to control for equal total trial duration (4.5s) across the252

two conditions.253

In sum, the only difference between the Task-Switch and the Task-Overlap254

condition was that in the Task-Overlap condition, the two numbers appeared255

simultaneously with the instrumental task stimulus for 0.3 seconds, and thus256

participants needed to hold these numbers in memory during the instrumental learning257

task, but in the Task-Switch condition participants did not need to hold them in258

memory while performing the instrumental learning task. That is, the Task-Switch259

condition was included to benchmark the global effects of taxing executive function260

without requiring secondary task representations to occupy working memory during the261

choice and feedback phases of the instrumental task.262

All other aspects of the experiment were largely the same as experiments 1 and 2,263

replacing the Single-Task condition with the Task-Switch condition and replacing the264

Dual-Task condition with the Task-Overlap condition. Particularly, in the Task-Overlap265

condition, two blocks were performed at each set size, and in the Task-Switch condition,266

one block was performed each at set sizes 3 and 6, and two blocks at set size 2. The last267

(10th) block always had a set size of 2 and trials in the Task-Switch condition, i.e., the268

easiest type of block, serving as a buffer between the learning and the testing phase and269

thus was excluded from all analyses. In the practice phase, participants performed 10270

more trials of Task-Switch tasks after the 10 trials of the practice Task-Overlap trials.271
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Figure 1 . Task Design: (A) Block structure of the learning phase (all experiments):
Participants performed 10 independent blocks of the instrumental learning task. The
10th block served only as a buffer between the learning and testing phase. Thus it was
removed from all analyses. Participants saw a display of all possible stimuli in the block
at the beginning of each block. (B, C) Single-Task blocks (experiment 1 and 2): regular
instrumental learning task, each controlling for the total trial duration (B) or the
inter-trial interval (C). (D) Main dual-task manipulation: Task-Overlap blocks (all
experiments): participants had to remember the two numbers presented concurrently
with the stimulus. After making a stimulus-dependent key-press (e.g. here L), and
obtaining feedback (here a correct +1), participants were asked to perform a size or
value judgment based on the remembered numbers. (E) Task-Switch blocks
(experiment 3): the two numbers for the secondary task were presented after
participants received the trial’s feedback, such that participants did not have to
remember the two numbers but only needed to judge the numbers between learning
trials. (F) Testing phase (all experiments): Each image repeated four times at
randomized places in the sequence. No feedback was given.

Statistical analyses272

All statistical analyses were done in R (version 4.3.1). To calculate the standard273

error of the mean, we used the std.error function in the plotrix package (version 3.8.2).274

To perform the Wilcoxon test, we used the wilcox_test function in the rstatix package275

(version 0.7.2). To statistically quantify the impact of different task variables on276

performance, we performed a two-way ANOVA and a mixed-effect regression analysis.277

To perform two-way ANOVA, we used the aov function. The dependent variable was278

average accuracy. The independent variables included were set size (3 levels: 2, 3, 6)279

and dual-task condition (2 levels: Task-overlap vs the control condition depending on280
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the experiment) and the interaction term. The mean and standard deviation are281

reported in supplemental table 1. To perform mixed-effect regression analysis, we used282

the mixed function in package afex (version 1.3.0), with model comparison method set283

to LRT, representing a likelihood ratio test. All continuous variables were scaled before284

passing them into the regression. We set the correct/incorrect responses as the outcome285

variable and subject identification number as the random intercept. For the learning286

phase data, we passed in four task variables as predictors: condition, set size, delay287

(i.e., the number of intervening trials between the current and previous viewings of a288

specific stimulus), and cumulative reward (i.e., the number of successful trials with the289

current stimulus). For the testing phase data, we passed in three task variables as290

predictors of performance: condition, set size, and asymptotic learning phase291

performance. We obtained the condition and set size of the stimuli presented in the292

testing phase by referring to the condition and set size those stimuli had belonged to293

during the preceding learning phase. The asymptotic rate of performance for each294

stimulus was obtained by computing the average correctness of the last 3 trials for that295

stimulus from the learning phase.296

The RLWM Computational Model297

Here we present the details of the “RLWM” model architecture, which functions298

as the basic foundation of our model-dependent analyses (A. G. Collins & Frank, 2012).299

The model was designed to fit participants’ choices in this instrumental learning task,300

and capture simultaneous contributions from working memory and reinforcement301

learning. Prior work showed that this model outperforms alternative models that do not302

include a hybrid RL + WM structure; indeed, other models could not capture the303

patterns of behavior that reveal the dissociable contributions of RL and WM on the304

performance in this instrumental learning task, in particular the strong effects of set305

size on accuracy (A. G. Collins, 2018; A. G. Collins & Frank, 2012; Rac-Lubashevsky,306

Cremer, Collins, Frank & Schwabe, 2023; Rmus et al., 2023). Therefore we rely on the307

RLWM computational framework to further examine the separate effects of perturbing308
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executive functions on the RL and the WM system.309

The RLWM model models the learning of stimulus-action values using a variant of310

a typical reinforcement learning model (Sutton & Barto, 1998). The model relies on two311

main variables representing the task environment. The first one is the state s ∈ S where312

S represents the full stimulus/state space within a block (i.e., all the possible images313

that could appear). In our experiment, |S| ∈ {2, 3, 6}. The second variable is the action314

a ∈ A where A is the full action space (i.e., j, k, l). In our experiment, |A| = 3 because315

there were three possible buttons to press as a response to the instrumental learning316

task. The algorithm proceeds in two stages, as introduced in the introduction: the value317

updating stage and the policy formation stage. In the value updating stage, for stimulus318

s and action a on trial t, the model estimates an expected value (i.e., the Q value)319

Q(st, at) by performing an update using the delta rule (equation 2; Rescorla, 1972):320

Qt+1(st, at) = Qt(st, at) + αδt (1)

321

δt = rt −Qt(st, at) (2)

where α represents the learning rate and Qt is a |S| × |A| matrix encoding all Q322

values given a trial t. Q0 is initialized as a uniform matrix of 1
|A| . δ ∈ [0, 1] is the reward323

prediction error, and r ∈ {0, 1} is the (binary) reward received. Critically, the model324

captures the parallel recruitment of working memory (WM) and reinforcement learning325

(RL) by training two simultaneous learning modules: The reinforcement learning326

module is described by equation 1. The working memory module is formally similar but327

has a learning rate of α = 1 (algebraically equivalent to equation 3). Thus, the working328

memory delta rule has perfect retention of the outcome of the previous trial with329

stimulus st, reflecting rapid learning of stimulus-response pairs that is qualitatively330

distinct from classic reinforcement learning. Working memory is also vulnerable to331

forgetting (Posner & Keele, 1967): The model captures trial-by-trial decay of332



DUAL EFFECTS OF DUAL-TASKING ON LEARNING 15

stimulus-action weights W (equation 4),333

Wt(st, at) = rt (3)

334

Wt+1 = Wt + γ(W0 −Wt) (4)

where γ ∈ [0, 1] is the forgetting parameter that draws all W weights toward335

their initial values W0 = Q0. The model also captures a positive learning bias (i.e., the336

neglect of negative feedback) upon negative prediction errors (i.e., δ < 0). The learning337

rate α is reduced multiplicatively: α− ∗ α where α− ∈ [0, 1] controls the learning bias338

(higher values cause less bias toward positive feedback, and lower values cause more).339

Learning bias occurs for both the reinforcement learning and working memory modules;340

in the latter case, the perfect learning rate of 1 is also scaled by α−.341

In the policy formation stage, Q-values and W weights are transformed by the342

Softmax function into a policy, i.e., a vector of probabilities of taking each action.343

Separate working memory and reinforcement learning policies (represented by row344

vectors πWM
t and πRLt ) are then combined in the calculation of the final policy via a345

weighted sum (equation 7),346

πRLt = p(A|st) = Softmax(Q(st), β) = eβQ(st)∑
a∈A eβQ(st,a) (5)

347

πWL
t = p(A|st) = Softmax(W (st), β) = eβW (st)∑

a∈A eβW (st,a) (6)

348

πt = wπWM
t + (1− w)πRLt (7)

where β ∈ [0,∞) represents the inverse softmax temperature and w ∈ [0, 1]349

approximates how much working memory contributes to the eventual decision. This350

value is determined by two free parameters, the working memory capacity (i.e.,351



DUAL EFFECTS OF DUAL-TASKING ON LEARNING 16

resource limit) K ∈ [2, 5] , and the initial working memory weight ρ ∈ [0, 1],352

w = ρ ∗min
(

1, K
|A|

)
(8)

This equation can be interpreted as the weight given to the working memory353

module is reduced if the set size exceeds working memory capacity K, in proportion to354

the ratio of items that can be held in working memory.355

Finally, un-directed decision noise (ε ∈ [0, 1]) is added to the final weighted356

policy (π) to capture potential noise during choice (action retrieval),357

πt ← ε
( 1
|A|

)
+ (1− ε)πt (9)

Modeling Procedure358

The modeling followed five steps: model fitting, model comparison, parameter359

recovery, model recovery, and model simulation and validation (Wilson & Collins,360

2019). Models were fit to participants’ choices using maximum likelihood estimation, by361

minimizing the negative log likelihood using the MATLAB fmincon function. Parameter362

constraints were defined as follows: α, γ, α−, ρ, ε,∈ [0, 1] and C ∈ [2, 5]. Initial363

parameter values were randomized within their constraints across fitting iterations.364

Inverse temperature β was fixed at 100 for all fits and simulations, reflecting optimal365

parameter recovery results from previous work using this model (Master et al., 2020).366

Each subject was fit over 100 iterations to avoid local minima in parameter values.367

Single task and dual task blocks were fit separately to examine the effects of368

dual-tasking on the fitted model parameters.369

Model simulation and validation were performed to ensure that the model’s key370

parameter value correlates with key behavioral features of the data and that the371

models’ learning behavior reproduces a qualitative pattern similar to that of human372

participants. Model simulations were conducted by simulating the model using each373

participant’s best-fit parameters and their actual observed sequence of stimuli and374

blocks. Model simulations were performed 100 times per subject and averaged.375
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Results376

Dual-task performance377

We first sought to validate the dual-task manipulation by checking that378

participants performed well in the secondary task. Indeed, participants on average379

made correct choices in 81.0% of trials of the number task correct (SE = 0.013) in the380

task-overlap condition of experiment 1, 81.0% correct (SE = 0.016) in experiment 2,381

and 82.7% correct (SE = 0.013) in experiment 3, well above chance level (50%).382

Participants also obtained an accuracy of 82.9% (SE = 0.015) in the task-switch383

condition in experiment 3. The number task accuracy of the two conditions in384

experiment 3 did not significantly differ from each other according to the Wilcoxon test385

(U = 559, p = 0.858). The number task accuracy and reaction time in the Task-overlap386

condition across all experiments did not depend on the congruency (whether the387

number larger in value was also larger in font size) of the numbers388

(U = 636, p = 0.243;U = 459, p = 0.278). However, in the Task-switch condition in389

experiment 3, we did observe that participants were more accurate and reacted faster in390

the congruent condition (U = 998, p < 0.001;U = 277, p < 0.001). This suggests that391

the congruency effect only holds if participants looked at the numbers while doing the392

number task, but not when they had to hold the two numbers in memory during the393

learning trial and then responded to the number task question. Congruency also did not394

impact the accuracy of the learning task (U > 530, p > 0.9) or the reaction time of the395

learning task (U > 530, p > 0.7). This indicates that the recruitment of inhibitory396

control did not impact reward learning.397

Next, we checked the overall impact on accuracy in learning across conditions and398

experiments. We also compared differences in accuracy between conditions399

(Task-overlap vs. Control) across the 3 experiments. These differences capture the400

negative impact dual tasking had on learning performance. We found that the average401

difference in accuracy (capturing the effect of dual task) in experiment 1 was402

significantly greater than that in experiment 2 ( 0.180 vs. 0.126, U = 326, p = 0.047).403

This could be because the elongated inter-trial interval in experiment 1 made the404
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Single-task condition easier (Figure 2). Indeed, Wilcoxon test showed that the accuracy405

in the Single-Task condition was higher in experiment 1 than in experiment 2406

(U = 652.5, p = 0.016).407

To investigate whether task-switching, in the absence of dual-task, also impacted408

performance, we calculated the average difference in accuracy between the Task-switch409

and Task-overlap conditions in experiment 3. This difference was significantly different410

from 0 (0.074; U = 44, p < 0.001), indicating that the dual-task had a unique impact411

beyond task switching. However, the difference was significantly smaller than the412

average difference in accuracy in experiment 1 and in experiment 2413

(U = 343; 179, p = 0.047; p < .001). Because the dual-task condition in experiment 1414

and 2 were the same condition as the Task-overlap condition in experiment 3, this effect415

can only be explained by the fact that participants performed worse in the Task-switch416

condition in experiment 3, compared to the single-task condition in experiment 1 and 2.417

This illustrates a cost to task-switching vs. single task. Through a more direct418

comparison, we indeed found that participants performed worse in the Task-Switch419

condition in experiment 3 compared to the Single-Task conditions in experiment 1 and420

2 (U = 870.5, 752.5; p < 0.001, p = 0.002).421

Learning phase422

We next sought to more carefully characterize condition and experiment effects423

using two-way ANOVA (see methods). Participants showed clear evidence of learning424

the stimulus-response mappings across all conditions. The probability of selecting the425

correct action increased with the number of stimulus appearances (Figure 2).426

Furthermore, learning was markedly weaker in the task-overlap condition than in the427

single-task condition in experiments 1 (F (1, 180) = 86.27, p < 0.001) and 2428

(F (1, 180) = 34.80, p < 0.001) and the task-switch condition in experiment 3429

(F (1, 192) = 9.655, p = 0.002) .430
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(A)

(B)

Figure 2 . (A) Learning Curves: Participants learned stimulus-response associations
over time, with significant effects of set size, experiment, and condition. Curves reflect
the proportion of correct responses as a function of the number of times that each
stimulus was presented, plotted separately for each set size and condition. (B) Model
validation: the RLWM model captures well the overall proportion of correct choices
across experiment, condition, and set size effects. Error bars reflect the standard error
of the mean.

Regression analysis results confirmed that participants used both working memory431

and reinforcement learning processes to solve the task. Indeed, if working memory was432
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recruited in this task, increasing the set size should decrease performance because433

holding more stimulus-response associations in mind across trials should make learning434

harder. We also analyzed the effect of cumulative reward for each stimulus in the435

regression model, obtained by adding all the points rewarded to each stimulus up to436

each trial. If reinforcement learning is incrementally increasing the value of the correct437

action associated with each stimulus, then performance should increase with the438

number of previous trials in which a stimulus has been rewarded. Replicating previous439

results (A. G. Collins et al., 2017; A. G. Collins & Frank, 2012), we observed both a440

significant negative effect of set size on performance in experiment 1441

(β = −0.175, χ2(5) = 25.433, p < 0.001), experiment 2442

(β = −0.288, χ2(5) = 63.784, p < 0.001), and experiment 3443

(β = −0.174, χ2(5) = 33.075, p < 0.001), as well as a significant positive effect of444

cumulative reward on performance also in experiment 1445

(β = 0.874, χ2(5) = 478.120, p < 0.001), experiment 2446

(β = 0.836, χ2(5) = 419.443, p < 0.001), and experiment 3447

(β = 0.821, χ2(5) = 568.759, p < 0.001), likely reflecting, respectively, the influences of448

working memory load and trial-by-trial reinforcement learning in this task (figure 2).449

The regression model also tested the effect of “delay” on performance, captured by450

the number of trials passed since the last time a particular stimulus was observed and451

correctly responded to. We observed a significant negative effect of trial-based delay in452

experiment 1 (β = −0.363, χ2(5) = 153.088, p < 0.001), experiment 2453

(β = −0.399, χ2(5) = 167.838, p < 0.001), and experiment 3454

(β = −0.366, χ2(5) = 161.038, p < 0.001), suggesting that short-term forgetting occurs455

during the task (a result which is also consistent with the recruitment of working456

memory).457

Finally, the regression results allowed us to consider dual task-overlap effects458

(figure 2). Consistent with our predictions, we observed a significant effect of condition459

in experiment 1 (β = −0.605, χ2(5) = 313.310, p < 0.001), experiment 2460

(β = −0.442, χ2(5) = 176.374, p < 0.001), and experiment 3461
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(β = −0.188, χ2(5) = 49.701, p < 0.001). Participants performed worse on the learning462

task in the Task-Overlap condition versus the Single-Task and Task-Switch condition.463

This result supports our prediction that performing the secondary task while464

concurrently retrieving and/or integrating reward feedback of the stimulus-response465

associations (Task-Overlap) had a stronger negative effect on learning relative to a466

situation where the secondary task is performed in between trials (Task-Switch) or467

relative to a situation where no secondary task was performed. Thus, actively468

maintaining information in WM affected instrumental learning performance.469
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(A)

(B)

Figure 3 . (A): The difference in testing phase accuracy: each dot represents the average
accuracy of a participant in the Task-Overlap condition minus that in the the control
condition. The diamond represents the mean of the average difference in accuracy. This
shows that accuracy in testing phase was consistently lower in the task-overlap
condition. (B): Change in accuracy: each point shows the mean value of the difference
between the testing phase accuracy and the average accuracy of the last three
(corresponding) learning trials. The difference in accuracy was not lower in the
task-overlap condition, suggesting an impairment of the reinforcement learning system.
Error bars reflect the standard error of the mean in both plots.



DUAL EFFECTS OF DUAL-TASKING ON LEARNING 23

Testing phase470

The asymptotic rate of learning performance, as expected, positively predicted the471

performance in the testing phase in experiment 1472

(β = 0.755, χ2(4) = 354.452, p < 0.001), experiment 2473

(β = 0.781, χ2(4) = 380.872, p < 0.001), and experiment 3474

(β = 0.908, χ2(4) = 528.983, p < 0.001). This result gives more assurance that475

participants perform better on trials with stimuli that were well learned in the learning476

phase.477

Next, we observed a significant positive effect of set size in experiment 1478

(β = 0.179, χ2(4) = 18.605, p < 0.001), experiment 2479

(β = 0.192, χ2(4) = 21.247, p < 0.001), and experiment 3480

(β = 0.161, χ2(4) = 17.154, p < 0.001; figure 3). This finding replicates seemingly481

counter-intuitive previous findings (A. G. Collins, 2018): That is, this result suggests482

that when set size is low and working memory is contributing the lion’s share to483

learning, long term retention of stimulus-action associations is actually hindered;484

conversely, when the set size is higher and reinforcement learning contributes more to485

learning, long-term retention is improved (even after controlling for asymptotic486

performance). Thus, the testing phase may act as a proxy for the strength of487

stimulus-response associations learned via the reinforcement learning system.488

For the same reason, we might expect participants to potentially perform better in489

the testing phase on stimuli from the Dual-Task condition where working memory is490

directly taxed, assuming that the two systems (WM and RL) are competing. Contrary491

to this expectation, however, we found that participants performed worse in the testing492

phase on trials with stimuli from the Task-Overlap condition in experiment 1493

(β = −0.304, χ2(4) = 43.395, p < 0.001) and experiment 2494

(β = −0.262, χ2(4) = 35.184, p < 0.001). In experiment 3, participants performed worse495

on trials with stimuli from the Task-Overlap condition than the Task-Switch condition496

(β = −0.142, χ2(4) = 13.466, p < 0.001). This suggests that the effects of the condition497

we saw in the learning phase are not simply an effect on choices but actually on how498
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well participants learned (figure 3). Otherwise, we would not see a condition-level effect499

on accuracy in the testing phase but only in the learning phase. This result also implies500

that directly blocking working memory seems to impair the performance of the501

reinforcement learning system as well, leading to decreased accuracy of testing phase502

responses.503

Finally, we investigated the difference between the accuracy in the testing phase504

and the average accuracy of the last 3 trials of the learning phase (figure 3). We ran a505

linear mixed-effect regression on the difference in average accuracy with the following506

predictors: condition, set size, and their interaction term. While we replicated the507

previous finding (A. G. Collins, 2018) that the set size had a significant positive effect508

in experiment 1 (β = 0.272, χ2(5) = 16.035, p < 0.001), experiment 2509

(β = 0.242, χ2(5) = 14.285, p < 0.001), and experiment 3510

(β = 0.249, χ2(5) = 12.960, p < 0.001), we did not see a significant effect of condition511

(χ2(5) < 1.874, p > 0.171). This suggests that while the dual-task manipulation512

decreased participants’ learning of the reward mapping, it did not affect the decay rate513

of the learning outcome.514
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Figure 4 . The difference in fitted parameter values between the Task-Overlap condition
and the control condition: the learning rate of the reinforcement learning module (α)
was consistently lower in the Task-Overlap condition, suggesting that dual-tasking
impaired the reinforcement learning system. Outlier |∆α| > 0.2 was removed for better
visualization but included in the statistics reported. Error bars reflect the standard
error of the mean. **:p<0.01, ***:p<0.001

Computational modeling results.515

To directly investigate the mechanisms leading to condition and experiment516

effects, we next turned to RLWM modeling. We first looked at the model parameters517

we computed as a result of model fitting (figure 4). In both experiment 1 and518

experiment 2, we observed a significant difference between the Dual-Task and519

Single-Task conditions in the reinforcement learning rate α (Exp 1 U = 71, p < 0.001;520

Exp 2 U = 71, p < 0.001), learning bias α− (Exp 1 U = 101, p = 0.003; Exp 2521

U = 80, p < 0.001), forgetting γ (Exp 1 U = 433, p < 0.001; Exp 2 U = 460, p < 0.001)522

and basis working memory weight ρ (Exp 1 U = 92, p = 0.002; Exp 2523

U = 47, p < 0.001). The fact that the dual-task manipulation did not have a significant524

effect on the ε noise parameter argues against the possibility that the effect of525

dual-tasking simply increased the noise of value-based choice without substantively526

impacting any executive function. Rather these results strongly suggest that dual-task527

manipulations during instrumental learning effectively interfere with both working528
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memory itself, as suggested by decades of dual-task work, but also a putatively529

lower-level reinforcement learning system.530

Interestingly, in Experiment 3, the only parameter value that significantly differed531

between the Task-Overlap and Task-Switch conditions was the reinforcement learning532

rate α (U = 69, p < 0.001). This result indicates that any dual task - whether it is one533

that is toggled between trials of learning or one that requires simultaneous memory534

maintenance during choice and updating – appears to hinder the reinforcement learning535

component of instrumental learning. On the other hand, the timing at which the extra536

memory load is imposed during dual-tasking appears to determine the severity of the537

dual-task effect on the reinforcement learning system. If the extra memory load is538

imposed during the value encoding stage of learning, as was the case in the539

Task-Overlap condition and all dual-task conditions in Experiments 1 and 2, we see a540

heightened hindrance of the reinforcement learning system.541

Discussion542

Many lines of evidence point to distinct processes contributing to instrumental543

learning (A. G. Collins & Frank, 2012; Daw, Gershman, Seymour, Dayan & Dolan,544

2011; Lee, Seo & Jung, 2012). We have recently suggested that two of the processes,545

working memory (WM) and cortico-striatal reinforcement learning (RL), can be teased546

apart using specific task designs and computational modeling methods (A. G. Collins,547

2018; A. G. Collins & Frank, 2012). One of the large gaps in this framework concerns548

the interaction of these two systems: whether one functionally depends on another. Our549

work provided one of the first direct evidence that the RL system indeed depends on550

executive functions because perturbing executive functions experimentally through the551

dual-task paradigm (Economides et al., 2015; Jiménez & Vázquez, 2005; Liefooghe,552

Barrouillet, Vandierendonck & Camos, 2008) led to worse learning outcome in the RL553

system, after controlling for direct contributions of WM to learning. We isolated the RL554

system using both an experimental method by introducing a test phase after the555

learning phase as well as through the “RLWM” model which was shown to nicely556
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dissociate the separate contributions of WM and RL to instrumental learning557

(A. G. Collins, 2018).558

The first main finding was that under the dual-task condition, participants559

performed significantly worse in the testing phase, where performance depended more560

on the information encoded in the RL system. Through modeling, we also found a clear561

effect of dual-tasking on the learning rate of the reinforcement learning system (Figure562

4). That a tax on executive function would directly disrupt the primary parameter of563

the (putatively implicit, "lower-level") RL system is novel in our view, and may point to564

a deeper connection between executive function and RL than normally assumed (Rmus565

et al., 2021). We note that an alternative prediction could have been that the dual-task566

would disrupt the choice process itself, as opposed to learning-related processes. If that567

were the case, we would expect the noise (ε) parameter to be higher under dual-tasking,568

which we did not observe (Fig. 4). This further supports our interpretation that the569

dual-task interfered with learning computations, rather than choice per se.570

Zooming out, we can interpret this result as an indication that working memory571

does not merely function as a separate storage system that works in parallel with the572

reinforcement learning system. If that were the case, we would expect taxing the573

executive function through dual-tasking to only disrupt the WM module while leaving574

the RL module unaffected. The fact that we found broader effects of the dual-task adds575

further support to the idea that there is a close dependency between WM and RL, as576

suggested in a recent similar study (A. G. Collins & Frank, 2018). We note that the577

dual-task paradigm does not allow us to directly speak to which specific component of578

executive function was responsible for the impairment of the RL system. We have a few579

speculations about why such impairment occurs. One hypothesis would be that greater580

noise in prefrontal representations, as expected from the addition of load, affects basic581

RL computations, for instance by disrupting "eligibility traces" that could be used to582

glue together states, actions, and rewards (Curtis & Lee, 2010) on short timescales.583

Another hypothesis is that some kind of explicit, internal verbal rehearsal process is584

being used by subjects in our task (Gershman, Markman & Otto, 2014), and that this585
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process is disrupted or even blocked by the dual-task used in Experiments 1 and 2.586

Future work could use less verbalizable symbols in the dual-task to help tease out a role587

for verbal rehearsal here (Aspen H Yoo et al., 2023).588

Our results also speak to some of the basic interpretations behind dual-tasking –589

dual-task manipulations are often thought to be useful tools for singularly taxing590

executive functions like attention and working memory, while sparing other (often591

sub-cortically linked) more implicit processes (Cohen, Ivry & Keele, 1990; Otto, Taylor592

& Markman, 2011; Vallesi, Arbula & Bernardis, 2014; Zeithamova & Maddox, 2006).593

While this general framework is useful and well-replicated, our results here complicate594

these assumptions somewhat, at least in the domain of instrumental learning. By595

showing that dual-tasking significantly disrupted a putatively non-cognitive RL system,596

we challenge the idea that dual-tasks leave implicit learning untouched (Rmus et al.,597

2021). Our findings may also have useful implications in more applied domains. For598

example in education, our findings suggests that factors that disturb executive functions599

(such as multi-tasking) may also impair more implicit learning mechanisms, like RL. In600

computational psychiatry, our findings highlight the difficulty of mapping mental601

disorders to specific sub-components of learning due to their mutual dependency.602

Overall, our findings point to a more general principle – seemingly distinct learning603

systems may often be at least somewhat intertwined, suggesting a more interactive604

approach to understanding learning (A. G. Collins & Frank, 2018; Fischer, Drosopoulos,605

Tsen & Born, 2006; McDougle, Ivry & Taylor, 2016).606
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